正在看着大家斗鸡斗的汗流浃背的时候,大路边的进学校后面的渠道上一座小桥出现一个穿一身紫色连衣裙的美女老师,她是团部副团长的女儿黄老师,教小学五年级数学的,因为快第三节课了,外面大太阳的,能晒得人流油哈,所以黄老师才穿的这么清凉,胳膊上还套着自己做的护袖,怕晒黑了她的胳膊,头上带着一顶草帽,高年级的正处在发育阶段的男生口(牲口),一个个的荷尔蒙分泌过剩,对黄老师吹着口哨,肆无忌惮的,黄老师也就瞟了一眼他们,独自继续骑着自行车往教师办公室而去,留下一群人在那鬼叫,好无聊的一群屁孩。

我无奈的摇摇头,再看向黄老师的草帽,忽然有了一种明悟:这不是刚才我纠结了好久的物理学问题吗?→宇宙世界膨胀问题。why?

我们先来从草帽的样式引申出了解势能的概念:

势能是指物体因其位置或配置而具有的能量。在物理学中,势能通常与重力场、电磁场等相互作用有关。例如,一个物体在地球表面附近的重力势能取决于其高度,而一个带电粒子在电场中的电势能则取决于其位置和电荷量。

势能的最低点

在物理学中,势能的最低点通常代表着系统的稳定平衡状态。这是因为在这个位置,任何小的扰动都会导致势能增加,从而使系统趋向于恢复到原始状态。换句话说,势能的最低点是一个局部最小值点,系统在这里的动能最小,因此是最稳定的状态。

势能的稳定平衡

势能的稳定平衡是指系统在受到微小扰动后能够自动返回平衡状态的特性。这种平衡状态是动力学稳定的,意味着系统在没有外力作用的情况下会保持在平衡位置。相反,如果系统在某个位置的势能是局部最大值或者鞍点,那么即使是很小的扰动也会导致系统离开平衡位置,进入不稳定状态。

势能的应用

势能的概念在物理学的许多领域都有应用,包括经典力学、量子力学、热力学等。在设计结构和机械系统时,工程师会考虑势能的分布来确保系统的稳定性和安全性。在材料科学中,势能的分析有助于理解材料的变形行为和断裂机制。在化学中,势能曲线可以用来描述化学反应的过程和能量变化。

综上所述,势能的最低点代表了系统的稳定平衡状态,这是因为在这个位置系统的势能达到最小,任何小的扰动都会导致势能增加,使系统倾向于回到这个平衡点。在实际应用中,理解势能的性质对于预测和控制系统的行为至关重要。

上面讲了势能跌落概念,那么各向同性的高势能(中间高,四周低的样式)会怎样呢?

各向同性势能的计算方法

各向同性势能通常指的是在所有方向上具有相同物理性质的势能。在物理学中,一个典型的例子是三维各向同性谐振子的势能。计算这种势能的方法通常涉及到解决相应的薛定谔方程。

直角坐标系中的计算方法

在直角坐标系中,三维各向同性谐振子的定态薛定谔方程可以写为:

[h\psi(\mathbf{r})=e\psi(\mathbf{r})]

其中(h)是哈密顿算符,(\psi(\mathbf{r}))是波函数,(e)是能量本征值,(\mathbf{r})是位置矢量。对于三维各向同性谐振子,哈密顿算符(h)可以分解为三个独立的谐振子哈密顿算符之和:

[h=-\frac{\hbar^2}{2m}(abla^2+\mu^2r^2)]

其中(\mu)是谐振子的振动频率,(r^2=x^2+y^2+z^2),(abla^2)是拉普拉斯算子。

通过分离变量法,可以将薛定谔方程分解为三个独立的一维方程,每个方程都对应一个谐振子的能级。然后,可以分别求解这三个方程,得到每个谐振子的能级,进而得到整个系统的总能级。

球坐标系中的计算方法

在球坐标系中,三维各向同性谐振子的定态薛定谔方程可以写为:

[h\psi(\mathbf{r})=e\psi(\mathbf{r})]

其中(h)同样是哈密顿算符,(\psi(\mathbf{r}))是波函数,(e)是能量本征值,(\mathbf{r})是位置矢量。在球坐标系中,哈密顿算符(h)可以写为:

[h=-\frac{\hbar^2}{2m}\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta}+\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}+\mu^2r^2\right)]

通过分离变量法,可以将薛定谔方程分解为三个独立的方程,其中两个方程对应球坐标系中的角度变量,一个方程对应半径变量。然后,可以分别求解这三个方程,得到整个系统的总能级。

以上两种方法都需要一定的数学技巧和物理知识,通常需要通过解析或数值方法来求解。在实际应用中,人们可能会根据具体情况选择合适的坐标系和计算方法。

假如宇宙世界不是在膨胀问题给困扰的话,对于各向同性的样式解:

各向同性势能的概念

各向同性势能是指在空间中各个方向上表现出相同性质的势能。在物理学中,这种势能通常与理想的均匀介质或均匀物质相关联,其中物质的物理性质(如密度、弹性模量等)在所有方向上都是相同的。

更多内容加载中...请稍候...

本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!

小说推荐:《重回1958,打造世纪豪门》《仗剑独行斩鬼神》【火趣阁】《灾变卡皇》【星空中文】《无限恐怖之这个中洲很叛逆》《回到84,成了乔丹一生之敌!》《谁让他修仙的!》《穿成科举文里的嫡长孙》《晋末长剑

白鹤看书【baiheks.com】第一时间更新《穹顶天魂的新书》最新章节。若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

都市小说推荐阅读 More+
全球高武

全球高武

老鹰吃小鸡
关于全球高武:地窟入侵,武道崛起。小人物也有大情怀,为生存而战,为守护而战。且看小人物方平,一步步崛起,拯救(忽悠)全世界的故事!(一群群号555700424已满,二群群号931250725)
都市 连载 1343万字
娱乐:重生豪门公子,玩转香江

娱乐:重生豪门公子,玩转香江

温酒斩曹操
重生90年的燕京大院小公子赵明磊,因为失手伤人,被家族送到香江。恰逢这个时代的香江娱乐进入下滑期,赵明磊看到契机。先找华仔、梁超伟拍一部。斥巨资拍摄,扭转局面。邱苏贞赵少,这部戏我躺哪?关智琳:赵少,你想打高尔夫球吗?李佳欣:赵少别生气,我给你看个宝贝。周荟敏:我是最爱的是赵少。听说向氏家族在香江挺狂,不好意思,在我这条过江龙面前,他们都得夹着尾巴做人。刘天仙:干爹,杨宓妹妹又抢我玩具~!赵明磊:
都市 连载 188万字
我的绝美女校长

我的绝美女校长

大总裁
特种军医回归都市,成为大学校医,惨遭绝美校长霸占,成为软饭男友!给校花做人工呼吸,她居然要以身相许?美少妇以病为由,天天骚扰?“军花,别这样,大家都是成年人,你这样倒追,我把持不住!”
都市 连载 360万字
诸天养老从火红年代开始

诸天养老从火红年代开始

暗石
绑定养老系统,体验票证生活,艰难岁月也能从容幸福。全部原创剧情,不同的人生,不同的家庭,穿越同样的火红年代。
都市 连载 306万字
1978合成系文豪

1978合成系文豪

好想吃薯片
【知青】+【象棋】=短篇小说《???》......江弦穿越到文学最璀璨的1978年,并觉醒“灵感合成系统”。合成灵感,即可获得文学作品。老天爷追着喂饭,他跟着一脚踏入文学圈子,一作成名!从此文坛,有了绕不开的一个存在与永在。游走于尚未辞世的文豪之间,与儿时曾仰望的星辰平起平坐。当人上人,做爹中爹。在虚伪的大雅中,玩了命地俗。爱就是爱,恨就是恨,钱就是钱。他就是时代主流,他的作品就是精神标杆
都市 连载 77万字
离婚后,我能听到未来的声音

离婚后,我能听到未来的声音

林中谷
人到三十古来稀,阎王不请自己去。离婚后,陆良突然觉得黄土已经埋到脖子,毕竟都能听到跑马灯的声音。直到他发现,那是来自未来的讯息,于是人生发生了翻天覆地的变化。……身在人世间,你我皆俗人。当个俗人也挺好,贪财好色腹黑自私……【非单女主,介意慎入】
都市 连载 124万字